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The principle of least effective volume, which is postulated in this study, leads to analytical
derivation of dendritic branch angles of pyramidal neurons. Global parameters such as combined
length and shaft area measured in anatomical experiments are analytically formulated as functions
of some parameters (called fundamental parameters in this study). The plots of the formulas are
closely consistent with experimental data [Larkman, J. Comp. Neurol. 306, 307 (1991); 306, 320
(1991)]. Our result suggests the existence of a few factors, which are probably chemical, responsible
for determining the parameters that work in the morphological rules of dendrites. The values of
diameters and lengths are given by this theory recursively. It is expected that these values can
be used for the morphological data which are the boundary conditions of the cable model and the

electrodiffusion model.

PACS number(s): 87.10.+e, 89.90.+n, 87.22.As, 87.90.+y

I. INTRODUCTION

Morphology (of any object) is difficult to describe in
mathematical terms. In particular, morphology of tree
structures has been studied using several methodologies.
Existing tree structures must have some stationary char-
acter. Tree structures are categorized into two groups by
their lying stationary character: (a) Physically station-
ary structures (such as diffusion-limited aggregation [1],
viscous fingering [2]), and (b) evolutionally (or biologi-
cally) stationary structures (such as branching patterns
in trees, blood vessels [3], and neuronal dendrites).

Although the biological structures are formed in long-
term evolutional process, they must be determined by
physical mechanisms, while interacting with environ-
ments. The evolutionally stationary character itself must
have a physical expression.

Our purpose is to understand and mathematically de-
scribe the dendritic morphology of pyramidal neurons.
We expect that our approach will be applicable to mor-
phology in other biological systems. In the case of mor-
phology of the blood vessel, there are analytical studies
based on a local optimality principle [3,4]. To determine
the branching angles of daughter branches, they minimize
the volume of blood vessels. When we apply the same
theory to morphology of neuronal dendrites, the branch-
ing angles become zero in an experimentally determined
condition (which is shown in the text). Therefore the
same method cannot be used in the neuronal morphol-
ogy. We propose a concept of effective volume in this
paper as an analogy of the volume of a blood vessel. In
the case of axonal morphology, there are excellent stud-
ies [5,6]. They use the principle of wiring economy as
an evolutionary pressure. We discuss later the difference
between dendritic morphology and axonal morphology.

In order to investigate dynamical properties of neu-
ral systems, it is fairly important to construct dynami-
cal equations [7,8] of a single neuron. The construction
of these equations themselves is a strategically difficult
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problem. It is, however, often the case that those models
are based on phenomenalistic arguments concerning neu-
ronal properties. The formulations of neuronal dynamics
have been studied over the past several decades. One
approach is based on the cable equations that describe
electric flows inside dendritic trees and/or axons [9-11].
Another is based on Hodgkin and Huxley equations [12]
which explain nonlinear neuronal properties. Combining
cable equations and Hodgkin-Huxley equations enables
us to carry out realistic simulations of neural systems.
Nevertheless, most of the studies have been done on a
small number of interconnected neurons. Recently, sim-
ulations of networks with realistic neurons have been en-
abled by progress in computer technology [13]. There
are still some morphological parameters to be determined
from biological neurons. Local electric parameters, such
as membrane capacitance and resistance used in each ca-
ble equation of a dendritic segment, should be experimen-
tally measured beforehand. In addition to those param-
eters, morphological parameters (such as the diameter
of each segment and the segment length) are also neces-
sary as a boundary condition of several electrophysiolog-
ical models (the cable model [10] and the electrodiffusion
model [11]). It would be an advantage to obtain values
of those morphological parameters systematically in or-
der to make simulations including as large a number of
segments as possible.

Several formulas involving some parameters which rule
the global morphology will be derived. The parameters
are called fundamental parameters in this study, and will
be defined in Sec. II. In Sec. III, the concept of effective
volume will be proposed. Then in Sec. IV the prin-
ciple of supremum effective volume will be postulated.
The length of each dendritic segment will be estimated
as a function of the segment diameter. Furthermore, the
principle of least effective volume will be postulated in
Sec V. In Sec. VI mathematical formulations for extra
global parameters such as the combined length Lcombined
and/or the combined shaft area Acombined, which are usu-
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ally measured in anatomical experiments, will be analyt-
ically derived as functions of the above mentioned fun-
damental parameters. We show that plots of those the-
oretical formulas are extraordinarily consistent with ex-
perimental data. In the final section, we will summarize
this paper, draw several conclusions, and finally argue
advantages of our postulated principle which describes
dendritic morphology.

II. THE FUNDAMENTAL SHAPE
PARAMETERS

There exist shapes of infinite variety of neurons in the
brain. For example, pyramidal neurons have obviously
different neuronal shapes from those of neurons in other
categories. How can we distinguish pyramidal cells from
other cell types? To answer this question, we should elu-
cidate common features of pyramidal cells. The averaged
values of some parameters (called fundamental parame-
ters in this paper) describe the common feature.

Some of the parameters are already collected [14]. Al-
though most notations of fundamental parameters are
based upon Ref. [14], some parameters (the segment
length [, the segment taper A A) are excluded from the set
of fundamental parameters (because the segment lengths
are determined as a function of the fundamental param-
eters in the following sections, and the segment taper
is considered to have small influences on basic neuronal
morphology if we use the averaged diameter along a seg-
ment). This section concisely describes the mathematical
notations.

Branch power (n). If the cross-sectional area is con-
served at each branch point, the relation

N
dy =) d?
i=1

must be satisfied. N is the number of furcation. dg is
the diameter of the parent dendrite and dj the diameter
of the kth daughter dendrite. The power 2 is called the
“branch power.” Impedance matching between dendritic
branches requires the power of 1.5 instead of 2. This
value is obtained by solving cable equations [10]. The
generalized relation is described as

N
dy = 3z,
=1

with branch power n, which does not necessarily take the
value of integer. In the case of cross-sectional conserva-
tion, the branch power n = 2.

Daughter-branch ratio (R). Most cases of branching are
bifurcations. Trifurcations or larger numbers of furca-
tions are rarely observed in actual neurons. Therefore
we assumed that only bifurcations occur at every branch
point in model neurons. Let the number of furcation NV
be 2. The daughter-branch ratio R is defined as the ratio
between the diameters of daughter branches. Using the
two diameters d; and dy the ratio R is given by

dy
dy’

(2.1)

(2.2)

R = (2.3)
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From (2.2) and (2.3), the following expressions for the
segment diameters:

dy = Ré¢do (2.42)

and

dy = Edo (2.4b)

can be given, where the parameter £ is expressed as

1

CCarR)

(2.5)
Notice that the furcation number N in (2.2) is set to 2

in the definition of the daughter-branch ratio. (2.4a) and
(2.4b) are generalized into recursive forms:

d), = Redy, (2.6a)
d?), = ¢dy. (2.6b)

The level & is the number of branch points on a dendritic
path traced from the primary trunk segment to a den-
dritic position. We can determine all of the diameters of
segments by using these equations recursively.

Terminal diameter (dmin)- Since intracellular mi-
crostructures should exist in every segment, we assume
that diameters have a minimum size. We define the min-
imum diameters as the terminal diameter.

Stem diameter (D). Dendritic segment diameters
strongly depend on the diameter D of their primary den-
drite [15]. We define this diameter as the stem diameter.

Effective dimension (v). From conventional geometry,
the dimension of dendritic volume is 3. When we take
the dendritic structure into consideration, the dimension
does not always have to have integer value. We define
such noninteger dimension as effective dimension v. This
parameter will be discussed in detail in the following sec-
tion.

Mass constant (C). The constant which combines a
dendritic diameter and a segment length is denoted by
C. This parameter will be defined in Sec. IV.

III. THE EFFECTIVE VOLUMES
OF SEGMENTS

In order to understand the concept of the effective vol-
ume of a segment, we consider two typical examples.
In the case in which segments of dendrites are tubular
[Fig. 1(a)], the volume of a segment is proportional to its
surface area, and is written by

Vtubular = Cgld (O( 7'l'ld), (31)
where [ is the segment length, d is the diameter of the
segment, and ca(cc ) is called the mass factor which
depends on the dimensionality of the segment.

In the second case in which segments of dendrites are
stuffed [Fig. 1(b)], the volume of a segment is written by
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FIG. 1. Dendritic segment. In the case in which segments
of dendrites are tubular (a), the volume of a segment is pro-
portional to the surface area of it. In the case in which seg-
ments of dendrites are stuffed (b), the volume of a segment is
approximated by the cylindrical volume. We generalize such
structure dependent volume in segments (c).

d 2
‘/stuffed = 7rl(§> = C3ld2’ (32)

where the mass factor is expressed as c3 = 7 /4.

Generally, a noninteger number () can be defined as
the effective dimension of the generalized cross-sectional
area. Using the effective dimension v and the mass fac-
tor c,41, we are able to write the effective volume of a
segment as

Vet = cpyald”. (3.3)

The effective dimension v in realistic neurons is consid-
ered between 2 (of the stuffed case) and 1 (of the tubular
case). See schematic figure [Fig. 1(c)].

IV. THE PRINCIPLE
OF SUPREMUM EFFICIENCY
OF DENDRITIC ORGANIZATION

Segments of a dendrite do not have interminable
lengths or interminable widths. It is fairly reasonable
to postulate the principle that the effective volume per
segment has a supremum. Let V,,, be the supremum
effective volume. The principle is expressed as the fol-
lowing inequality:

C,,+1ldu < ‘/sup- (41)
From this inequality, we get a relation among the seg-
ment length [, the segment diameter d, and the effective
dimension v:

l<cd™, (4.2)

where the constant is written as C' = ¢, 41/Viyp. This re-
lation is shown in Fig. 2 for a case (Cv%v = 3.8[pm],
v = 1.9). These values of the parameters are deter-
mined by least-squares fitting with the experimental data
[16] using the expression of averaged segment lengths [see
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FIG. 2. The relation between segment lengths and segment
widths. Our condition in a supremum effective volume gives
a qualitative agreement with the experimental data. Small
squares ((J) show the experimental data which are the replots
of Ref. [16].

(A3) in the Appendix]. The broken curve shows the left-
hand side of (4.2). According to the inequality (4.2), seg-
ment lengths should have values under the broken curve.
Shorter segments will be allowed than that expressed by
the broken curve. Small squares are replots of the ex-
perimental data [16]. It shows a qualitative agreement
between our theory and the experiment. In both theory
and experiment, segments with smaller diameters tend to
be longer. Mass constant C is included in fundamental
parameters.

V. THE PRINCIPLE
OF THE LEAST EFFECTIVE VOLUME

We postulate another principle called the principle of
least effective volume in this section. This principle states
that the effective volume of the actual dendritic tree
should have the least value. As a first step, we consider
the neighborhood of a branch point. The effective volume
in the neighborhood of a branch point should have the
least value when the dendritic segments elongated from
the branch point reach specific points. We determine the
branch point such that effective volume is stationary to
infinitesimal displacement of the branch point in any di-
rection. The ideal branch point is given by a function of
the two fixed points which two bifurcate segments reach.
The fixed points are assumed as variable parameters to
obtain the branch point. This method is based on the
variational principle [17]. The effective volume in the
vicinity of the branch point o is given by

Vesr = cura(IPo — oldy + [p1 — ofdf + |pz — old5), (5.1)

where po, p1, and p; are variable points on dendritic seg-
ments (see Fig. 3). The variational problem is to find the
branch point o for which V.g is stationary while po, p1,
and p2 are fixed,

Ve
do

=o0. (5.2)

From these equations (5.1) and (5.2), we get a relation
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FIG. 3. Branch angles. The figure shows the vicinity of a
branch point o. The branch angles are defined as the angles
between a dendritic segment and its daughter branches.

of the branch angles:

dg _dr _ dj
sin(f; + 02) sinf; sinfy’

(5.3)

where angles 6;, 6, are between a dendritic segment and
its daughter branches (see Fig. 3). The angles do not
depend on po, p1, and p; in Egs. (5.3). Combining (2.2),
(2.3), and (5.3), we obtain the following expressions for
the branch angles:

1 n z,,g R2V _
0, = arccos A+ RY" + 7 ! , (5.4a)
2R¥(1 + Rn)¥/™

n 27” _ R2v
02 = arccos 1+ R") R/ +1 . (5.4b)
2(1 + R*)"'™

Most experimentally obtained values of the angles sat-
isfy the relation

0<6y, 0, <.

: (5.5)

Consider the case that daughter diameters are equal, that
is, that the daughter-branch ratio R equals 1, to get a sine
qua non for the branch power n and effective power v.
From the condition (5.5), the arguments of the equations
(5.4a) and (5.4b) are confined to the domain (0,1) with
the inequality

0<2-"t<1. (5.6)

Therefore the relation between the two powers is given
by

v<n.

(5.7)

Since the branch power n equals 2 in most kinds of neu-
rons [14], the assumption that v = 2 (the case to which
we apply the conventional volume) leads to zero branch
angles 0,0, = 0. Therefore in the case of neuronal den-
drites, we cannot take the conventional volume whose
effective dimension is v = 2. This result (5.7) is also con-
sistent with the definition of effective power v, which is
conceptually proposed in Sec. III.

VI. MATHEMATICAL EXPRESSIONS
OF GLOBAL PARAMETERS

There are pieces of excellent work of neuronal anatomy
[14,16], which show several relations between the values

of global parameters, such as the segment diameter d vs
the combined shaft area Acombined, the segment length [
VS Acombined, the combined segment length L ombined VS
Acombineds @ VS Leombined, and so on. The mathematical
definitions of these parameters and the results of mathe-
matical considerations are described in this section. The
derivations of expressions for the values are given in the
Appendix. In order to carry out detailed comparisons
with experiments, a specific set of the averaged param-
eter values (dmin = 0.6[pm], r = 2.0, R = 1.2) of a
basal dendrite are chosen from the experimental paper
[16]. The values of the parameters C, v are the same
as the ones in Sec. IV. Using the values, the total seg-
ment length composed of all the lengths I (which is called
combined length Lcombined) is written as

8max kv
1
Lcombined = CD* Z {“—_—ﬁ}
k=0 (1 + R )1/
5 (k
v\b
<3 (5)@rn

s(b)>k

(6.1)

where s(b) is the branch level given by

In(dmin/D) —bln R
In ’

s(b) = (6.2)

1
A+R™MI/™
and the maximum branch level syax is
In(dmin/D)

= (6.3)

Smax = 3
(1+Rn)1/n
Similarly, the combined shaft area Acombined, Which is the
sum of segment surface areas of all the branch levels, is
given by

8max k(v+1)
Acombined = CWDV+1 Z —1‘_—
—= (1 + Rn)l/n

(K
8 z:(JUV“W (6.4)
b=0
s(b)>k
1400 T T T T J— T
++
E 1200 | ° 7 1
E or
£ 1000 T
g 800 | I
) 3 f
3 600 + b
8 o £,
3 400 - ° 7
£ o8 £+ Larkman Ref.[16] ©
8 200 §902+++ theory + A
g
! 1 ) ) L \ .

0
00 05 10 15 2.0 25 3.0 35 4.0
Stem Diameter (um)

FIG. 4. The relation between stem diameters and com-
bined lengths. The abscissa shows stem diameters D. The
ordinate shows the total segment length composed of all the
lengths (which is called combined length Lcombinea). Small
squares ((J) show the experimental data which are the replots
of Ref. [16]. The theoretical plots by (6.1) have quantitative
agreement with the experimental data.
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FIG. 5. The relation between stem diameters and shaft
areas. The abscissa shows stem diameters D. The ordinate
shows the sum of segment surface areas of all the dendritic seg-
ments (which is called combined shaft area Acombined). Small
squares () show the experimental data which are the replots
of Ref. [16]. The theoretical plots by (6.4) have quantitative
agreement with the experimental data.

The formulations are exactly derived from (2.1), (2.3),
and (4.2). Substituting the appropriate values for the
fundamental parameters, the relations between the global
parameters are plotted in Figs. 4-6. The plots have fairly
good correspondences with the results on basal dendrites
in the experimental paper [16].

VII. SUMMARY AND DISCUSSIONS

In this paper, we derived several formulas, which rule
global dendritic morphology.

In the first place, we proposed the concept of effective
volume, which can be related to the fundamental param-
eters.

In the second place, the principle of least effective vol-
ume is postulated. This principle led to the analytical
derivation of dendritic branch angles.

In the third place, a supremum effective volume per
segment is assumed and we derived an inequality be-
tween a segment length and a segment diameter. This
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FIG. 6. The relation between combined lengths and shaft
areas. The abscissa shows combined length Lcombinea. The
ordinate shows combined shaft area Acombinea. Small squares
(O) show the experimental data which are the replots of
Ref. [16]. The theoretical plots by (6.1) and (6.4) have quan-
titative agreement with the experimental data.

inequality is consistent with experimental observations.

In the final stage, mathematical formulations for ex-
tra global parameters such as combined length or shaft
area, which are usually observed in anatomical experi-
ments, are analytically derived as functions of the above
fundamental parameters. The formulas are remarkably
consistent with experimental observations [16].

We postulated a few principles which determine the
morphology of hundreds of segment lengths and diame-
ters. The constraints for dendritic structures are given by
six fundamental parameters. It may be stated that the
correspondences between theoretical results from such a
few reduced constraints and experimental data are rather
surprising. We would thus argue that the fundamen-
tal parameters are the most essential elements for den-
dritic morphology. The correspondences not only guar-
antee that observed values and computed values from
the formulas coincide, but also suggest the existence of
a small number of chemical factors responsible for deter-
mining the fundamental parameters. It is expected that
minimizing effective volume corresponds to maximizing
efficiency of molecules organizing fibers and organelles
that exclude electrolytes. Since a dendritic core current
should flow in electrolytes, we expect that the core resis-
tance of dendritic segments may be expressed by a func-
tion of effective dimension v. This expectation should be
confirmed in a future study.

Such chemical mechanisms may explain the mecha-
nisms of dendritic development. A dendritic cross section
should have an effective dimension between 1 (tubular
segments) and 2 (stuffed segments). Although a cross-
sectional area should have a dimension 2 from the con-
ventional point of view, the theoretical condition (5.7)
requires a noninteger value. This nontrivial result is con-
sistent with the condition substituting an experimentally
determined value.

However, our theory cannot explain axonal morphol-
ogy satisfactorily. It is considered that the axonal mor-
phology is determined by global (environmental) con-
ditions which result from the principle of wiring econ-
omy [5]. Thus we can draw the following picture for
neuronal morphology: The axonal morphology is much
constrained by environmental conditions of a neuron,
whereas the dendritic morphology is much constrained
by local (cytochemical) conditions.

The recursive algorithm (2.6a) and (2.6b) derived in
this study makes the simulation of actual morphology
of neurons possible. The results of computer simulation
will be reported elsewhere [18]. In the simulation, whole
dendritic trees are graphically created with a few global
parameters. We can categorize several kinds of neurons
according to the values of our fundamental parameters.
Such morphological categorization is also discussed in the
paper [18] with computer simulation.

The synaptic distribution based on minimum informa-
tion transfer principle and self-similar principle [19] may
be reproduced by our theory in a different manner. We
strongly expect that such a functional principle, evolu-
tionary principle, and our morphological principle must
have a close relationship with each other.

Since all of the segment lengths and diameters can be



48 THEORY OF DENDRITIC MORPHOLOGY 3129

given by this theory from a few parameters, realistic sim-
ulations using cable equations will be possible. Finally,
we believe that without experimentally observing the de-
tailed dendritic morphology, such a method would have
significant advantages for the studies in computational
neuroscience. Such a theory based on the variational
principle will also be applicable to other biological mor-
phology.
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APPENDIX

Equations (6.1)—(6.4) are derived in the following way.
The sum of segment lengths in the same branch level k&
(the level is the number of branch points on a dendritic
path traced from the primary trunk segment to a den-
dritic position) is given by

k

> (ﬁ) (Daew)>

b=0
s(b)>k

(A1)

where b is the level of branching into a thinner segment
on the path from the primary trunk segment. We express
d(b) in the form

d(b) = D¢*R® (A2)

by using (2.6a) and (2.6b) recursively. (l)4() shows the
mean length of the segments which have the same diam-
eter. The mean segment length is given by

cdb) ™"
Dap) = ——(2) ; (A3)
averaged by a distribution function of segment lengths,

if0<l<Cd(b)™
otherwise.

1
Pagy(1) = { G (A4)

The distribution function is the simplest interpretation
of the inequality (4.2). From (2.5), (A2), and (A3),
Eq. (A1) becomes

c 5k
ComEet X ()@ =0 ). (45)
o5
Summing (A5) over any branch levels (k = 0, ..., Smax),
we get (6.1).
In a similar way, we can get (6.4) from the sum of the
segmental shaft area in the same branch level,

> (3) 2O,

b=0
s(b)>k

(A6)

(6.2) is obtained from the edge condition of the follow-
ing inequality:

d(0)|k=s3y = DE O Ry > digin. (A7)
The maximum branch level sy,.x satisfies
S(Smax) = Smax- (A8)

Then we get (6.3) by solving this equation.
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